

Implementation and Performance Evaluation
of Embedded IPsec in Microkernel OS

 Mohammad Hamad

Institute of Computer and Communication Networks

 Technical University Braunschweig
Braunschweig, Germany

mhamad@ida.ing.tu-bs.de

Vassilis Prevelakis

Institute of Computer and Communication Networks

 Technical University Braunschweig
Braunschweig, Germany

prevelakis@ida.ing.tu-bs.de

Abstract—The rapid development of the embedded systems
and the wide use of them in many sensitive fields require
safeguarding their communications. Internet Protocol Security
(IPsec) is widely used to solve network security problems by
providing confidentiality and integrity for the communications
in the network, but it introduces communication overhead.
This overhead becomes a critical factor with embedded
systems because of their low computing power and limited
resources. In this research, we studied the overhead of using
embedded IPsec in constrained resource systems, which run
microkernel operating system (OS), in terms of the network
latency and throughput. To conduct our experiment first, we
ran the test with an unmodified network stack, and then we
ran the same test with the modified network stack which
contains the IPsec implementation. Later, we compared the
results obtained from these two sets of experiments to examine
the overhead. Our research demonstrated that the overhead
imposed by IPsec protocols is small and well within the
capabilities of even low cost microcontrollers such as the one
used in the Raspberry Pi computer.

Keywords—Embedded IPsec; LwIP; network security;
Microkernel.

I. MOTIVATION
 All the electronic devices around us such as cellphones,
washing machines, cars, and aircraft rely on smaller systems
called embedded systems. The use of embedded system
produces many security issues. We will discuss some of
these security issues later in this paper. These issues led us to
focus on the security threats related to embedded systems.
The use of microkernel OS can improve security in
embedded systems [11]. The microkernel OS has many
advantages such as: small kernel size which reduces the code
that must be privileged, different access control privileges
for each applications, and the ability to apply system policy
to control applications’ communications. The Genode
framework [18] is a good example of microkernel OS which
can run on embedded systems.

 However, using a secure microkernel OS may solve
some of the security problems of distributed systems, but it
will not eliminate all of them. Most embedded systems rely
on a network to communicate with each other. The use of
wired and wireless connections in the embedded systems
opens the possibility of many security vulnerabilities, for
example, the security issues in internal network in aircraft.
This network system contains three different functional
networks: crew, passenger, and plane control networks.
These networks separated by virtual LAN [24]. Many
research have proved that the internal network is prone to
security attack; passenger could use the on-board
entertainment network to hack the control system of the
aircraft [4].

 The same issue appears in the internal network of
vehicles. Most cars use the Controller Area Network (CAN)
bus in their network communications for in-car network.
Experimental security analysis of modern cars [21] showed
that CAN protocol is vulnerable to denial of service attack
and many more security issues. Since CAN packets are
broadcasted to all nodes, any malicious component can
observe, change, and send packets to any node [21], [3].
Some security experts used a security tool (CARSHARK)
connected to CAN bus via OBD-II port to snoop on the car’s
communications. This attack was able to cause losing the
control of the car by disabling the brakes or even by stopping
the engine [21].

The security issues are not only related to wired
communications; wireless communications also have
inherent problems which may be used by the attackers to
damage the systems. For example, there is a wireless
pressure sensor in a car’s tires, which measures the pressure
and sends the measurement to the pressure central unit. An
alert is sent to the car’s central unit in case of low pressure.
A hacker could, in some circumstances, interfere with the
communications by sending false low-pressure reading or
even stop the relevant ECU completely [12].

Another concern for the car security is to protect the
driver and the vehicle information privacy and prevent
unauthorized third parties from tracing and collecting the This research has been sponsored by the Deutsche

Forschungsgemeinschaft, under project “Controlling Concurrent Change.”

Full Paper NNGT Int. J. on Information Security, Vol. 4, October 2015

© N&N Global Technology 2015
DOI : 04.IJIS.2015.1.9

relevant information depends on vulnerabilities posed by
wireless technologies which were used in the car [23]. In the
previous example, an adjacent vehicle in the range of the
wireless network able to receive the communication between
the tire pressure sensor and the car’s control unit, these
communications may contain the ID of the sensor which can
be used to trace the car and its location. Encrypting the
messages is one solution to provide the required privacy [1]
and reduce the ability to collect the car’s identity
information.

The previous examples indicate the importance of
providing privacy, integrity, and origin data in the system
communications. One solution to provide all these
requirements is using IPsec. IPsec provides the integrity and
the confidentiality for each packet in the communication
session; moreover, IPsec runs in the third layer, which makes
it transparent to upper layers, therefor applications do not
need to have any knowledge of IPsec to be able to use it.
IPsec based on two encapsulation protocols; one is
Authentication Header (AH) which provides data-origin
authentication, data-integrity, and protection from the replay-
attack. The other one is Encapsulating Security Payload
(ESP) which provides data confidentiality and also supports
its own authentication scheme like that used in AH. IPsec
can be used in either transport or tunnel mode. Transport
mode is used to protect the data flows between a pair of
hosts, while tunnel mode is used to protect the data flows
between a pair of hosts, two gateways, or between a host and
a getaway. IPsec provides security but in the same time, it
affects the performance of communication because of the
additional processing required. In embedded applications in
particular, the main concern is that IPsec may cause
unacceptable overhead.

In this paper, we measured the overhead and the
performance of using IPsec in environment which contains
embedded devices; these embedded devices run microkernel
OSs. We compared our results with the case of running the
test case without IPsec. We evaluated the measurements in
the term of CPU utilization and communication delay.
Finally, we examined the feasibility of applying IPsec in low
price and limited resources embedded devices, which can be
used in the future for in-vehicle network architecture.

The rest of the paper organized as follow. Section II
describes the related work in measuring the performance of
IPsec. Section III briefly details the prototype of the system.
Section IV explains our implementation of the embedded
IPsec. Section V discusses the test bed configurations.
Section VI discusses the experimental results. Finally,
Section VII contains some concluding remarks.

II. RELATED WORK
IPsec has been the subject of a lot of research with the

object of building fast and secure systems. Many groups
studied the performance of IPsec regarding different factors
such as the network topology, the network protocols, and the
OS of the platform in the test beds. Many researchers have
studied the performance of IPsec under different OSs.
Niedermayer et al. [16] studied the performance of IPsec
under various kernel versions of Linux OS, they also
measured the latency and the throughput when different

encryption algorithms were used for ESP and different
authentication algorithms were used for AH. They indicated
that the use of the fast encryption algorithms will improve
the performance of ESP. Miltchev et al. [31] studied the
performance of IPsec under OpenBSD OS, they explored
how various modes and various encryption algorithms affect
its performance, they indicated that small packet sizes
causes bad throughput. Narayan et al. [9] studied the
performance of IPsec on Windows OS combinations, they
measured the throughput of different versions of Windows
OS (vista, XP, Windows7) when different IPsec algorithms
were used (AES, DES, 3DES), their research showed that the
performance of IPsec under different versions of Windows
OS was comparable. In monolithic OSs the IPsec
implementation is part of the kernel, it is interlacing with the
other components of the kernel. The existence of IPsec in the
kernel makes the trusted code base huge, it makes the IPsec
also vulnerable to compromise if other components of the
kernel were successfully penetrated. Härtig et al. [20]
provided an approach to reduce the complexity of the trusted
computing base of a VPN gateway while running it in the top
of fiasco microkernel OS; they extracted the security relevant
functions of IPsec and executed them in separate protection
domain and let the untrusted components, which include the
TCP/IP implementation, to interact with it. However, they
did not provide any performance measurement on their
implementation.

IPsec was also used to protect the communication in the
networks which contain resource-constrained devices like
sensors. Granjal et al. [25] studied the feasibility of using
IPsec in context of Wireless Sensor Networks (WSN). In
their study, they analyzed the execution times and memory
requirements of cryptographic algorithms; they indicated that
AES is the best choice for an encryption algorithm to be used
within IPsec for the embedded devices. Raza et al. [19]
evaluated the performance of IPsec implementation in WSN
between the constrained resources sensors and a host
computer, they studied the performance in terms of packet
overhead and communication performance, they indicated
that AH and ESP had similar response times for small
packets. However, the response time for ESP increases as the
packet size increases, they also indicated that using AES will
improve processing time and reduce energy consumption
comparing to the other encryption algorithms.

Comparing the IPsec performance overhead over IPv4
and IPv6 networks was the subject of [8]. They studied the
performance of IPsec in terms of end to end throughput and
delay parameters. The authors used Netperf as measurement
tools and ran their experiment on ordinary PC, which was
running OpenBSD as OS with 128 MB memory. They
compared the result of using AH only, ESP only, AH and
ESP, and without IPsec. The research indicated that the end
to end throughput degrades to about 1/2 with the AH, while
it degrades to about 1/4 with the ESP.

The overhead of IPsec on real-time interactive
communications was presented in [5] and [10]. Both of the
papers studied the influence of IPsec when it was used to
protect voice or video transaction using a wireless link. They
used IPsec in the tunnel mode with ESP. Zarrella et al.[2]
showed how the added headers to each packet while

Full Paper NNGT Int. J. on Information Security, Vol. 4, October 2015

© N&N Global Technology 2015
DOI : 04.IJIS.2015.1.9

applying IPsec cause an overhead on the communications.
This overhead become significant especially for small VOIP
packet; it can cause a considerable reduction in throughput
over a low bandwidth wireless network. However, the
results from [5] and [10] indicated that depending on an
infrastructure, which has adequate bandwidth, the IPsec can
be used to provide the security for VoIP with negligible
difference in the quality of transmitted voice and video and
with minimal decrease in the network performance.

In general, a lot of research studied the performance and
the overhead of IPsec on powerful PCs running monolithic
operating systems, where the IPsec is part of the kernel. On
the other hand, fewer efforts have been done in studying the
performance of IPsec when it was used in microkernel
operating system, or when IPsec was used to protect the
communication of resource constrained embedded devices.
Thus, we established our test case by selecting embedded
IPsec package and integrating it with lightweight IP stack,
and then we used this modified package as a network stack
in microkernel operating systems. We measured the
overhead of using IPsec in this environment comparing to
using native IP stack. The components of our system are
discussed in details in Section III.

III. PROTOTYPE SYSTEM
 This research is one effort in big project called

Controlling Concurrent Change (CCC) [17]. The main goal
of CCC project is to provide suitable methods and platform
architectures for future car. This platform will enable the
integration of updates and new functions in the field ensuring
the quality, high robustness, security, and with no significant
increase in cost or energy consumption. Security is one of
the cornerstones to achieve the project’s goals by providing
the security for the upgrading and integration process. The
first consideration is providing security for the
communications of the architectural components through the
local, closed inner-network or through open networks.

We simulated the ECUs inside the car by using very low
cost platforms and then provide the security for their
communications. We used Raspberry Pi [13] as a simulator
of vehicle’s ECU. Raspberry Pi has many attractive
properties such as: it is a small size computer board
composed of an ARM-like SoC, it includes all the I/O and
storage interfaces, slot for a SD-card, Ethernet port and
HMDI output. On the other hand, it has the ability to run
microkernel OS like Genode. Moreover, we can get it at a
low price approximately for tens of euros.

We used Genode framework as a runtime environment
for many reasons; Genode supports various micro kernels
such as Fiasco and Mini Linux, also it can run directly on the
ARM hardware depend on a kernel called base-hw kernel,
which provides the mechanism required by Genode. Genode
consists of three layers: (1) the microkernel in the kernel
space, (2) the Genode component in the user space, these
components contains the devices drivers, resource
multiplexer and protocol stacks and (3) at the top is the
applications layer [22]. Genode is a secure operating system
architecture, it maintains tree of processes and ensure that
process is exposed to only those parts of system on which it
ultimately depends, if one part of the system is

compromised, the defect is limited to that particular part and
its dependent parts, unrelated processes remain unaffected.

Genode rely on lightweight Internet Protocol (lwIP) [32]
as TCP/IP stack. It ported lwIP in the form of a library
running in user space. Basically, lwIP implementation
focused on reducing the usage of the memory resources and
the code size to make it suitable for the embedded systems.
LwIP is a full-scale TCP/IP stack but without any
implementation for the IPsec protocols. To gain our goal of
providing secure communications we used embedded IPsec
package and integrated it the lwIP stack. The implementation
of this package is described in the next section.

IV. IPSEC IMPLEMENTATION
IPsec may be implemented by several different methods

in a host. It can be implemented by “bump-in-the-stack”
(BITS) method which means that IPsec is integrated directly
below the IP layer. Another method of implementation is by
integrating IPsec into the IP layer [6].

In our research, we used an existing package developed
by Scherer and et al. [7]. They adopted the BITS method for
their implementation by creating the IPsec as shim and
inserted it between the IP and link layer as shown in Fig. 1.

This package has a number of deficiencies; it supports
the tunnel mode only while the transport mode was not
implemented. Moreover, it supports only the manual keying
to set up the Security Association (SA) parameters. Finally,
it does not handle the problem of IPsec with fragmentation;
the package can handle the packet with size less than MTU.
The previous implementation drops the packet silently In
case the protected packet exceeds the MTU, this action may
stop the whole communication later.

We enhanced their package by implementing the
transport mode for both AH and ESP. We also removed the
implementation of MD5, SHA1, and 3DES-CBC algorithms
from the package since they are part of OpenSSL [27] library
which is ported to the Genode framework. Adding
fragmentation to the IPsec implementation could be achieved
in two ways: (a) keep using the BITS architecture and re-
implementing the fragmentation services to keep the IPsec
package independent or (b) by integrating the IPsec into the
IP layer and using the existing fragmentation code. We
selected the second option in our implementation, as shown
in Fig. 2.

Fig. 1. Previous IPSec Implementation as layer between the IP and the
network interface.

Full Paper NNGT Int. J. on Information Security, Vol. 4, October 2015

© N&N Global Technology 2015
DOI : 04.IJIS.2015.1.9

Fig. 2. Our IPSec Implementation, we integrate the IPsec within the IP
layer.

We handled the fragmentation issue for outgoing packets
as next:

a. We applied IPsec outgoing packets processing
for all packets regardless of their sizes without
checking the need of fragmentation.

a. We looked up for the SA depending on the
source and destination addresses in the packet’s
header.

b. We processed the packet corresponding to the
security protocol (AH, ESP, or both) which
exists in the SA.

c. In the case of successful processing, we checked
whether the packet needs to be fragmented to
pass it to the fragmentation service which passes
it later to the data link layer.

d. The packets, which did not need to be
fragmented, were passed directly to the data link
layer.

While for incoming packet we reassembled the fragmented
packet before applying the IPsec processing on it:

a. We checked whether the incoming packet needs
to be re-assembled or not. If the packet was
fragmented then we passed it to the re-
assembling service.

b. Then, we looked up for the SA based on the
Security Index parameter (SPI) in the packet’s
header.

c. We processed the reassembled packet regarding
to the security protocol (AH, ESP, or both) in
the SA.

Our primary concern was the evaluation of the overhead
of IPsec only without considering the overhead of Internet
Key Exchange (IKE). Therefore, we did not implement the
IKE in our system. Moreover, the manual keying is
supported by IPsec implementation in the other system (i.e.
OpenBSD) of our test bed, so we kept using manual keying
to configure the cryptographic keys.

Interoperability is an important key in each software
implementation. So, we tried to check our IPsec package’s
interoperability by testing it in non-homogenous
environment. We were able to successfully establish
connections to OpenBSD IPsec implementation.

V. TEST BED CONFIGURATION

Measurement tools:
 Many tools have emerged to aid in the performance

monitoring of the networks. The most common tools to
measure the latency are ping and Netperf [15]. Since ping
works in the IP layer, its measurements do not consider the
above layers. On the other hand Netperf is running in the
application layer so its measurements will include most of
the network stack. In addition, Netperf was ported in the
Genode platform which gives us additional two reasons to
prefer it: (a) confidence in its integrity with the other
components of Genode environment and (b) confidence in
our measurement results by comparing it with others’
measurements results.

Netperf works as client/server application. It consists of
two applications; the first one is the Netserver, which runs in
the local host. It waits for the connection from the remote
host. The remote side runs the second application, which
called Netperf. Netperf provides us measurements for
unidirectional throughput and end-to-end latency.

Experiment environment:
To conduct our experiment we used Raspberry Pi and

Asus X53U laptop; Asus laptop was running OpenBSD 5.5
as OS and had a 1.65 GHz AM-E450 CPU. Raspberry Pi and
Asus laptop were connected as shown in Fig. 3.

First, we ran the measurement with unmodified
implementation of lwIP under Genode OS on the Raspberry
Pi. Then, we ran the same test with our modified lwIP, which
contains our embedded IPsec implementation, the test
environment on the Raspberry Pi is described in Fig. 4. Later
in the analysis section we compared the results from the two
measurements. The IPsec configurations for the test bed
were:

• IPsec Authentication: we configured the test bed to
use MD5 as authentication algorithm.

• IPsec Confidentiality: we set up the test bed to use
both MD5 as authentication algorithm and 3DES-
CBC as encryption algorithm.

• IPsec for both AH and ESP was configured to use
transport mode.

These configurations were hardwired in the IPsec code in
the Raspberry Pi side and were configured by changing the
ipsec.conf file on the OpenBSD side.

 In our performance test, we considered the next network
performance metrics: latency and end-to-end throughput.

Full Paper NNGT Int. J. on Information Security, Vol. 4, October 2015

© N&N Global Technology 2015
DOI : 04.IJIS.2015.1.9

Fig. 3. Layout of experiment environment.

Fig. 4. Raspberry Pi running Genode without IPsec (left) and with modified
lwIP stack which contains IPsec (right).

VI. ANALYSIS OF THE RESULTS

A. Latency
Latency is the time that a single packet takes to travel

from the source to the destination. We measure the latency in
two cases; (a) traffic flow from OpenBSD, which runs
Netserver, to the Raspberry Pi, which runs Netperf, and (b)
traffic flow from Raspberry Pi, which run Netserver, to
OpenBSD, which run Netperf. Fig. 5 represents the relation
between the latency and different packet sizes for the first
case. We measured the latency by applying TCP_RR test
from OpenBSD to Raspberry Pi with various message sizes
while applying AH, ESP, and no-IPsec. The latency was
calculated from the transaction rate that was provided from
Netperf report. Fig. 6 shows the latency when we ran
TCP_RR test in second case.

Fig. 5. Latency test for no-IPSec, AH transport, and ESP transport, traffics
from OpenBSD to Raspberry Pi.

Fig. 6. Latency test for no-IPSec, AH transport, and ESP transport, traffics
from Raspberry Pi to OpenBSD.

Both Fig. 5 and Fig. 6 indicate that latency, in the both
direction, was increased when we apply ESP; but the
difference in the latency values is still negligible. At the
same time they indicate that latency is low when the flow
runs from Raspberry Pi toward OpenBSD compared to the
latency when the flow runs in the opposite direction.

B. Throughput
Throughput is the amount of data that can be transferred

from the source to the destination in a specific period of
time. Fig. 7 represents the result of testing throughput when
the data flows from the server (Raspberry Pi) to the client
(OpenBSD) in three different cases: IPsec with AH, IPsec
with ESP, and no-IPsec. Different message sizes were used
to measure the throughput for each test case.

Fig. 8 shows the throughput when the data flows from the
client (OpenBSD) to the server (Raspberry Pi) in the same
three cases. Both the Fig. 7 and Fig. 8 indicate that
throughput decreases 33% when we use AH compared to its
value without using IPsec, while it decreases 70% when we
use ESP compared to the throughput value without using
IPsec. They also indicate that throughput is better with the
large message size. The low value of the throughput is not
caused by our IPsec implementation; when we measure the
throughput of the system without our IPsec code we got
close result comparing to our result in the case of using no-
IPsec with our implementation. To discover the reason of
low throughput value we checked the packet loos issue, we
found that the rate of packet retransmission was negligible
(2%), so it cannot be the main reason of the low
performance. However, the low throughput was expected
with the current version of the USB driver and the way of
processing the high interrupt load on the system. Optimizing
the process of handling the interrupts issued by the Network
Interface Card (NIC) will improve the performance of the
network which consequently will reflect on the IPsec
performance [28].

Full Paper NNGT Int. J. on Information Security, Vol. 4, October 2015

© N&N Global Technology 2015
DOI : 04.IJIS.2015.1.9

Fig. 7. Throughput test for NO IPsec, AH transport, and ESP transport.
traffics from Raspberry Pi to OpenBSD.

Fig. 8. Throughput test for NO IPsec, AH transport, and ESP transport.
traffics from OpenBSD to Raspberry Pi.

VII. CONCLUSION
In this paper, we evaluated the performance of IPsec

when it protects the communications of embedded systems.
The embedded IPsec used as part of the network stack in
microkernel framework running on the top of cheap and
known hardware like Raspberry Pi.

Our experimental result indicated that the throughput
value decreases when we use AH or ESP comparing to it is
value in the case when no-IPsec was used. It indicates also
that when the packet size is small, IPsec becomes less
efficient. These results are comparable with the results of
much other research [14] and [30]. Our results also showed
that the increase of the latency value is small even after
applying IPsec.

However, since most of the security issues in the
distributed embedded system communications are related to
the lack of proper authentication mechanism to prevent
unauthorized parties from hijacking an embedded computer
or sending false data [26]; we believe that applying AH in
the communication of constrained resources platforms, such
as Raspberry Pi running microkernel OS, will solve all the
issues related to the missing of data origin authentication
and the absent of data integrity with acceptable overhead on
the efficacy. Achieving privacy by using IPsec with ESP in
such constrained resource systems will cause significant

overhead that might degrade the system capabilities in terms
of throughput. We also believe that using more efficient
encryption algorithm such as AES instead of 3DES
algorithm will improve the performance of ESP [29].

Since Genode ported the lwIP stack in a way that we can
use it as a user-level library for Genode applications, the
lwIP stack will be linked against each networking application
and they will share one single flow of control, as a future
work we plan to study the performance of using only one
lwIP stack with IPsec implementation and make all the
network applications communicate with it via remote
procedure calls (RPC). Another effort may be done by
porting IKE to Genode framework to set up the security
associations dynamically and then studying the additional
overhead of using IKE in the same test bed.

REFERENCES

[1] M. Wolf, A. Weimerskirch, and C. Paar, "Secure in-vehicle

communication," in Embedded Security in Cars, New York: Springer
Berlin Heidelberg, 2006, pp.95-109.

[2] H. Xiao and P. Zarrella. “Quality Effects of Wireless VoIP Using
Security Solutions.” IEEE Military Commun. Conf. (MILCOM),
2004, vol. 3, pp. 1352-1357.

[3] M. Wolf, A. Weimerskirch, and C. Paar, "Security in Automotive Bus
Systems," in Workshop on Embedded IT-Security in Cars, Bochum,
Germany, 2004

[4] M.S. Ali, R. Bhagavathula, and R. Pendse, “Airplane Data
Networks and Security Issues”, Digital Avionics Syst. Conf., Oct,
2004.

[5] J. Klaua and A. Hess, “ On impact of IPSec on Interactive
Communication”, in Proc. 19th Int. Parallel & Distributed Process.
Symp. (IPDPS), Denver, Colorado, 2005.

[6] S. Kent and K. Seo, “Security Architecture for the Internet Protocol”,
RFC 4301, 2005.

[7] N. Schild and C. Scheuer, “Embedded IPSec, light weight IPSec
Implementation”, Diplome Thesis, Berne Univ, Switzerland, 2003.

[8] S. Ariga, K. Nagahashi, M. Minami, H. Esaki, and J.
Murai,”Performance evaluation of data transmission using IPSec over
IPv6 networks,” in Proc. of the 10th Annu. Internet Society Conf.
(INET 2000), Yokohama, Japan, July 2000.

[9] S. Narayan, M. Fitzgerald, and S. Ram, “Empirical Network
Performance Evalaution of IPSec Algorithms on Windows Operating
Systems Implemented on a Test-bed”, IEEE Int. Conf. on
Computational Intell. and Computing Research (ICCIC), December
2010.

[10] M. Babu, “Performance analysis of IPSec VPN over VoIP network
using OPNET,” Int. J. of Advanced Research in Comput. Sci. and
Software, 2012, vol. 2, no. 9, pp. 38-42.

[11] G. Heiser, “Secure embedded systems need microkernel,” J. of
System and Software, 2007.

[12] I. Roufa, R. Millerb, H. Mustafaa, T. Taylora, S. Ohb, W. Xua, M.
Gruteserb, W. Trappeb, and I. Seskarb, ” Security and Privacy
Vulnerabilities of In-Car Wireless Networks: A Tire Pressure
Monitoring System Case Study”, in Proc. Of 19th USENIX security
Symp., Washington, DC, 2010, pp. 223-238.

[13] E. Upton and G. Halfacree, Raspberry Pi User Guide, 2nd ed. New
York: Wiley, 2013.

[14] B.L. Chappell, D.T. Marlow, P. M. Irey IV , K. O'Donoghue, “An
Approach for Measuring IP Security Performance in a Distributed
Environment.“, in Proc. 11th IPPS/SPDP’99 Workshops , San Juan,
Puerto Rico, USA,1999, pp. 389-394.

[15] Hewlett-Packard Company. Netperf: A network performance
benchmark. http://www.netperf.org.

[16] H. Niedermayer, A. Klenk, and G. Carle, “The Networking
Perspective of Security Performance - a Measurement Study,” in
Proc. 13th GI/ITG Conf. Measurement, Modeling, and Evaluation of

Full Paper NNGT Int. J. on Information Security, Vol. 4, October 2015

© N&N Global Technology 2015
DOI : 04.IJIS.2015.1.9

Comput. and Commun. Syst. (MMB), Nurnberg,Germany, 2006, pp.
119-136.

[17] Controlling Concurrent Change (CCC) Research unit,
http://neu.ccc-project.org.

[18] Genode OS Framework, http://genode.org.
[19] S. Raza, S. D., A. Chung, D. Yazar, T. Voigt, and U. Roedig,

“Securing communication in 6lowpan with compressed ipsec.” in
Proc. 7th Int. Conf. on Distributed Computing in Sensor Syst.
(DCOSS'11), Barcelona, Spain, 2011. pp.1 -8.

[20] H. Härtig, M. Hohmuth, N. Feske, C. Helmuth, A. Lackorzynski, F.
Mehnert, and M. Peter, “The Nizza Secure-System Architecture.” In
Proc. 1st Conf. on Collaborative Computing, Dec. 2005.

[21] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S.
Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S.
Savage, "Experimental Security Analysis of a Modern Automobile,"
in Proc. of the 31st IEEE Symp. on Security and Privacy, 2010, pp.
447-462.

[22] B. Pruthiviraj, G. S. Madhusuthun, S. Vijayasarathy, and K.
Chakrapani, “A Microkernel Based Secure Operating system Using
Genode Framework”, J. of Theoretical and Appl. Inform.
Technology, Vol. 38, No. 2, 2012.

[23] U.S. Sen. Edward Markey (D-Mass.),” Tracking & Hacking: Security
& Privacy Gaps Put American Drivers at Risk”, February 2015.

[24] N. R. Suresh and S. V. Mathew, “Security concerns for cloud
computing in aircraft data networks.” in Proc. 6th Int. Conf. on
Internet Technology and Secured Trans., (ICITST), Abu Dhabi,
United Arab Emirates, 2011, pp. 132–136.

[25] J. Granjal, J. Sa Silva, E. Monteiro, J. Sa Silva, and F. Boavida, “Why
is IPSec a viable option for wireless sensor networks,” in 5th IEEE
Int. Conf. on Mobile Ad Hoc and Sensor Syst. (MASS 2008),
Atlanta, GA, USA, 2008, pp. 802– 807.

[26] U. E. Larson and D. K. Nilsson "Securing vehicles against cyber
attacks", Proc. 4th Annu. Workshop Cyber Security Inform. Intell.
Research, CSIIRW\'08, vol. 288, 2008.

[27] The OpenSSL Project, "OpenSSL: The open source toolkit for
SSL/TLS," April 2003, www.openssl.org.

[28] M. G. Iatrou, A. G. Voyiatzis, and D. N. Serpanos,” Network Stack
Optimization for Improved IPsec Performance on Linux,” in Proc.
Inte. Conf. on Security and Cryptography (SECRYPT 2009), Milan,
Italy, 2009.

[29] M. Sokol, S. Gajewski, M. Gajewska, and L. Staszkiewicz, "Security
and Performance Analysis of IPsec-based VPNs in RSMAD," in The
1st Int. Conf. on Advanced Commun. and Computation
(INFOCOMP'11), 2011, pp. 70-74.

[30] J. Rossebø, J. Ronan, S.Davy, “An analysis of IPsec deployment
performance in high and low power devices.”, 17th Nordic Teletraffic
Seminar, Norway, August 2004.

[31] S. Miltchev, S. Ioannidis, and A. D. Keromytis ,” A Study of the
Relative Costs of Network Security Protocols”, in Proc. of the
FREENIX Track: 2002 USENIX Annu. Tech. Conf., Monterey,
California, 2002.

[32] Light Weight TCP/IP stack, http://lwip.wikia.com.

Full Paper NNGT Int. J. on Information Security, Vol. 4, October 2015

© N&N Global Technology 2015
DOI : 04.IJIS.2015.1.9

